
张会慧,教授,博士生导师
“龙江学者”青年学者、黑龙江省高层次人才、黑龙江省优秀青年基金获得者、黑龙江省高校青年创新人才、东北林业大学成栋优秀青年学者引进人才、东农学者“青年才俊”。
担任国家林草局北方沙区桑树产业创新联盟副理事长和专家委员会委员、中国林学会树木生理生化专业委员会常务委员、中国林学会青年工作委员会委员、黑龙江省蚕蜂产业技术协同创新推广体系岗位专家、黑龙江省植物生理学会理事、《生态学杂志》青年编委、《植物研究》客座编辑等职务。
联系方式
邮箱: zhang_hh@nefu.edu.cn
地址:东北林业大学生命科学学院(逸夫教学楼)337室
工作经历
2022-至今 教授,东北林业大学生命科学学院/东北盐碱植被恢复与重建教育部重点实验室
2021-2022 副教授,东北林业大学生命科学学院/东北盐碱植被恢复与重建教育部重点实验室
2019-2021副教授,东北农业大学资源与环境学院
2015-2019讲师,东北农业大学资源与环境学院
教育经历
2021-博士后,东北林业大学林学院/林木遗传育种全国重点实验室,导师:李成浩教授
2011-2014博士,东北林业大学生命科学学院,遗传学,导师:孙广玉教授
2009-2011硕士,东北林业大学生命科学学院,植物营养学,导师:孙广玉教授
2005-2009本科,东北林业大学生命科学学院,生物科学
研究方向
林草植物逆境生理与分子生物学
科研项目
[1] 国家自然科学基金:面上项目 (32271751),54万元
[2] 国家自然科学基金:青年基金 (31901088),24万元
[3] 东北林业大学成栋优秀青年学者引进人才,100万元
[4] 黑龙江省自然科学基金:优青 (YQ2023C027),10万元
[5] 国家博士后基金:特别资助 (2023T160089),18万元
[6] 国家博士后基金:一等资助 (2022M710023),12万元
[7] 黑龙江省博士后基金:二等资助 (LBH-Z22051),10万元
[8] 黑龙江省高校青年创新人才 (UNPYSCT-2020115),10万元
[9] 中央高校基本科研业务费 (2572022BD01),10万元
[10] 中国烟草公司横向课题 (2023230003670064),39.5万元
[11] 中国烟草公司横向课题 (2020230003670060),10万元
[12] 广东省森林培育与保护利用重点实验室开放基金 (SPU2024-05),4万元
[13] 珍稀濒危动植物环境保护教育部重点实验室开放基金 (2019001),5万元
[14] 新乡赋红农业科技有限公司横向课题 (HKF230150002),5万元
[15] 黑龙江省科学院自然与生态研究所横向课题 (HZX230150002),3万元
[16] 东北农业大学东农学者计划青年才俊 (18QC12),6万元
科研奖励
[1]黑龙江省科技进步三等奖“桑树作物复合经营提升盐碱地生产力综合配套技术”(3/5),2017
[2]黑龙江省高校科技进步二等奖“桑树作物复合经营提升盐碱地生产力综合配套技术”(3/5),2017
[3]黑龙江省科技进步二等奖“石油污染地植被恢复的综合配套技术”(8/9),2015
教学工作
[1] 主讲植物生理学(本科)和植物营养生理(研究生)课程
[2]主编《植物生理学》教材(第二名),中国林业出版社,2025
[3]参编《植物生理学》教材,高等教育出版社,2025
[4]参编《土壤肥力与肥料》教材,中国农业出版社,2019
[5] 黑龙江省基础学科“101计划”《植物生理学》课程建设东北林业大学负责人
[6] 指导全国大学生生命科学竞赛(2023年三等奖1项,2024年三等奖2项)
[7] 指导黑龙江省大学生生命科学竞赛(2023年二等奖1项,2024年二等奖2项)
课题组研究生
博士后:王哲远
在读博士:2021级:王洁琛,2022级:Muhammad Salman,2023级:张红娇,2024级:姚桐桐
在读硕士:2022级:宋嘉啟、崔聪聪、汲广新、张哲、冯鑫杰、钟明慧、赵雪娴;2023级:张洪瑞、王可欣、张探航、梁彦龙、孙承启、许晶晶、孙楠;2024级:亓思越、刘宏震、李艳平、李慧娇、杨眉剑
毕业硕士:2022届:徐梓淞、霍雨泽;2023届:郭凯文;2024届:张洪博、姚桐桐
王哲远获得2024年国家博士后基金,徐梓淞(2020)、郭凯文(2021)、王洁琛(2021)、张洪博(2022)、姚桐桐(2023)、宋嘉啟(2024)、张哲(2024)分别获得国家奖学金。
第一作者或通迅作者发表论文
2025年
[1] Wang JC, Cui CC, Qi SY, Song JQ, Wang ZY, Ji GX, Sun N, Liu XM, Zhang HH. The NAC transcription factor PagNAC17 enhances salt tolerance in poplar by alleviating photosynthetic inhibition. Plant Physiology and Biochemistry, 2025, 217: 109645 (IF2023:6.1, Corresponding author, Top)
[2] Qin B, Sun ML, Liu HZ, Wang KX, Zhang HR, Li T, Li DM, Zhang HH. Alfalfa MsGAD2 induces γ-aminobutyric acid accumulation enhances Cd resistance in transgenic tobacco. Environmental and Experimental Botany, 2025, 229: 106058 (IF2023: 4.5, Corresponding author, Top)
[3] Wang JC, Ding CJ, Cui CC, Song JQ, Ji GX, Sun N, Qi SY, Li J, Xu ZR, Zhang HH. Physiological and molecular responses of poplar to salt stress and functional analysis of PagGRXC9 to salt tolerance. Tree Physiology, 2025, (IF2023:3.5, Corresponding author)
[4] Ji GX, Wang ZY, Song JQ, Zhang HR, Wang KX, Xu JJ, Sun N, Zhang TH, Qi SY, Ding CJ, Zhang HH. The Trx-Prx pathway and PGR5/PGRL1 dependent cyclic electron transfer play key roles in regulating photosynthetic inhibition in poplar under drought stress. Tree Physiology, 2025, 45: 4 (IF2023:3.5, Corresponding author)
[5] Song JQ, Wang JC, Qin R, Ji GX, Cui CC, Sun N, Qi SY, Ding CJ, Zhang HH. RNA-Seq-based WGCNA reveals the physiological and molecular responses of poplar leaves to NaHCO3 stress. Trees-Structure and Function, 2025, 339: 3-23 (IF2023:2.1, Corresponding author)
[6] Chen HZ, Song LL, Zhou HJ, Yao TT, Zhang Z, Zhang HJ, Meng L, Zhang HH. ABA signal transduction and ROS metabolic balance play a key role in the drought resistance of safflower. Plant Growth Regulation, 2025, DOI: 10.1007/s10725-024-01273-4 (IF2023:3.5, Corresponding author)
[7] Wei YL, Zhang TE, Yao TT, Wang ZH, Che HY, Zhang HH. The impact of Ca2+ on the protective mechanisms of the photosystem under drought stress. Journal of Plant Interactions, 2025, 20: 2458083 (IF2023:2.6, Corresponding author)
2024年
[1] Zhang HB, Yao TT, Wang JC, Ji GX, Cui CC, Song JQ, Sun N, Qi SY, Xu N, Zhang HH. Genome-wide identification of R2R3-MYB transcription factors in Betula platyphylla and functional analysis of BpMYB95 in salt tolerance. International Journal of Biological Macromolecules, 2024, 279: 135193(IF2023:7.7, Corresponding author, Top)
[2] Zhang Z, Zhang HJ, Yao TT, Wang KX, Xu JJ, Zhang HR, Qi SY, Ao H, Qin B, Zhang HH. The homeostasis of ions and reactive oxygen species in root and shoot play crucial roles in the tolerance of alfalfa to salt alkali stress. Plant Physiology and Biochemistry, 2024, 216: 109175 (IF2023:6.1, Corresponding author, Top)
[3] Zhang HJ, Yao TT, Zhang HR, Zhang Z, Wang KX, Qi SY, Xu ZR, Qin B, Zhang HH. Hormonal signaling regulates photosynthetic function of alfalfa (Medicago sativa L.) under NaHCO3 stress. Environmental and Experimental Botany, 2024, 228: 105999(IF2023:4.5, Corresponding author, Top)
[4] Yao TT, Zhang HJ, Zhang WX, Zhang Z, Wang KX, Zhang HR, Sun N, Ding CJ, Zhang HH. Transgenic Poplar with the Zygophyllum xanthoxylon zinc finger protein transcription factor ZxZF gene shows improved drought resistance by regulating hormone signal. Environmental and Experimental Botany, 2024,225:105868 (IF2023:4.5, Corresponding author, Top)
[5] Che YH, Wang HR, Yao TT, Wang ZH, Bo L, Zhang HH. Activation of the antioxidant system and transduction of the mediated by exogenous calcium improve drought resistance in tobacco. Plant Stress, 2024, 13: 100551(IF2023:6.8, Corresponding author)
[6] Hu XQ, Zheng T, Chen WJ, Duan HL, Yuan ZJ, An JQ, Zhang HH, Liu XM. Genome-wide identification and expression analysis of the GST gene family of Betula platyphylla Suk. Journal of Forestry Research, 2024, 35: 123-141 (IF2023: 3.4, Corresponding author)
[7] Cui CC, Song JQ, Han SX, Wang JC, Ji GX, Zhang Z, Zhang HJ, E ZY, Yuan Y, Zhang HH. The effect of nitrogen reduction combined with biochar application on the photosynthetic function of tobacco leaves. Journal of Plant Interactions, 2024, 19: 2369759 (IF2023:2.6, Corresponding author)
[8] Yuan Y, Zhou QX, Yao TT, Cui CC, Wang Y, Qiao C, Jiao YS, Sun HW, Huang QC, E ZY, Yin KD, Zhang HH. Biochar modulates the antioxidant system and hormonal signaling in tobacco under continuous-cropping conditions. Journal of Plant Interactions, 2024, 19:2395884 (IF2023:2.6, Corresponding author)
[9] Zhang HR, Wu YN, Zhang HB, Sun N, Zhang HJ, Tain B, Zhang TH, Wang KX, Xu N, Zhang HH. AtMYB72 aggravates photosynthetic inhibition and oxidative damage in Arabidopsis thaliana leaves caused by salt stress. Plant Signaling & Behavior, 2024,19: 2371694 (IF2023: 2.8, Corresponding author)
2023年
[1] Che YH, Yao TT, Wang HR, Zhang Z, Wang ZH, Zhang HB, Yuan Y, He GQ, Sun GY, Zhang HH. Abscisic acid plays a key role in the mechanism of photosynthetic and physiological response effect of Tetrabromobisphenol A on tobacco. Journal of Hazardous Materials, 2023,424:130792 (IF2023: 12.2, Corresponding author, Top)
[2] Wang JC, Song JQ, Qi HL, Zhang HJ, Wang L, Zhang HB, Cui CC, Ji GX, Muhammad S, Sun GY, Xu ZR, Zhang HH. Overexpression of 2-Cys Peroxiredoxin alleviates the NaHCO3 stress-induced photoinhibition and reactive oxygen species damage of tobacco. Plant Physiology and Biochemistry, 2023,201:107876 (IF2023:6.1, Corresponding author, Top)
[3] Zhang HB, Yao TT, Wang Y, Wang JC, Song JQ, Cui CC, Ji GX, Cao JN, Muhammad S, Ao H, Zhang HH. Trx CDSP32-overexpressing tobacco plants improves cadmium tolerance in leaves by modulating antioxidant mechanism. Plant Physiology and Biochemistry, 2023, 194:524-532 (IF2023:6.1, Corresponding author, Top)
[4] Yao TT, Ding CJ, Che YH, Zhang Z, Cui CC, Ji GX, Song JQ, Zhang HB, Ao H, Zhang HH. Heterologous expression of Zygophyllum xanthoxylon zinc finger protein gene (ZxZF) enhances the tolerance of poplar photosynthetic function to drought stress. Plant Physiology and Biochemistry, 2023,199:107748 (IF2023:6.1, Corresponding author, Top)
[5] Che YH, Fan DY, Teng ZY, Yao TT, Wang ZH, Zhang HB, Sun GY, Zhang HH, Chow WS. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress. Physiologia Plantarum, 2023,175(4):13981 (IF2023: 5.4, Corresponding author)
[6] Ding CJ, Wang Y, Zhang WX, Wang JC, Song JQ, Cui CC, Ji GX, Ding M, Su XH, Zhang HH. Physiology and transcriptomics reveal that hybridization improves the tolerance of poplar photosynthetic function to salt stress. Trees-Structure and Function, 2023, 38:95-114 (IF2023:2.1, Corresponding author)
2022年
[1] Wang Y, Yu YT, Zhang HB, Huo YZ, Liu XQ, Che YH, Wang JC, Sun GY, Zhang HH. The phytotoxicity of exposure to two polybrominated diphenyl ethers (BDE47 and BDE209) on photosynthesis and the response of the hormone signaling and ROS scavenging system in tobacco leaves. Journal of Hazardous Materials, 2022,424:127265 (IF2022: 13.6, Corresponding author, Top)
[2] Wang Y, Guo DD, Wang JC, Tian B, Li YY, Sun GY, Zhang HH. Exogenous melatonin alleviates NO2 damage to tobacco leaves through promoting antioxidant defense, modulating redox homeostasis and signal transduction. Journal of Hazardous Materials, 2022,426:128012 (IF2022: 13.6, Corresponding author, Top)
[3] Che YH, Yao TT, Wang HR, Wang ZH, Zhang HB, Sun GY, Zhang HH. Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. Plant Physiology and Biochemistry, 2022, 186:40-51 (IF2022:6.5, Corresponding author, Top)
[4] Yu YT, Portoles S, Sun GY, Wang XF, Zhang HH, Guo SG. The key clock component ZEITLUPE (ZTL) negatively regulates ABA signaling by degradation of the chloroplast outer membrane-localized CHLH/ABAR in Arabidopsis. Frontiers in Plant Science, 2022,13: 943153 (IF2022:5.6, Corresponding author)
[5] Li YY, Tian B, Wang Y, Wang JC, Zhang HB, Wang L, Sun GY, Yu YT, Zhang HH. The transcription factor MYB37 positively regulates photosynthetic inhibition and oxidative damage in Arabidopsis leaves under salt stress. Frontiers in Plant Science, 2022,13: 943153 (IF2022:5.6, Corresponding author)
[6] Chen HZ, Song LL, Zhang HB, Wang JC, Wang Y, Zhang HH. Cu and Zn Stress affect the photosynthetic and antioxidative systems of alfalfa (Medicago sativa). Journal of Plant Interactions, 2022, 17(1): 695-704 (IF2022:3.2, Corresponding author)
[7] Yu H, Wang Y, Wang JC, Zhang HB, Che YH, Yao TT, Yang KH, Zhang HH. RNA interference (RNAi) of 2-Cys Prx gene enhances PSII photoinhibition but does not affect PSI activity in tobacco leaves under high temperature stress. Journal of Plant Interactions, 2022, 17(1): 831-839 (IF2022:3.2, Corresponding author)
[8] Yuan Y, Sun HW, Wang Y, Xu ZS, Han SX, He GQ, Yin KD, Zhang HH. Wood vinegar alleviated the photosynthetic inhibition and oxidative damage of Pseudomonas syringae pv. tabaci (Pst) infection in tobacco leaves. Journal of Plant Interactions, 2022, 17(1): 801-811 (IF2022:3.2, Corresponding author)
2021年
[1] Wang Y, Wang JC, Guo DD, Zhang HB, Che YH, Li YY, Tian B, Wang ZH, Sun GY, Zhang HH. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa). Plant Physiology and Biochemistry, 2021, 167: 140-152 (IF2021:5.437, Corresponding author)
[2] Sun HW, Zhang HB, Wang Y, Liu XQ, Li YY, Tian B, Sun GY, Zhang HH. TMT-based quantitative proteome analysis of the effects of Pseudomonas syringae pv. tabaci (Pst) infection on photosynthetic function and the response of the MAPK signaling pathway in tobacco leave. Plant Physiology and Biochemistry, 2021, 166: 657-667 (IF2021:5.437, Corresponding author)
[3] He GQ, Zhang HB, Liu SQ, Li HQ, Huo YZ, Guo KW, Xu ZS, Zhang HH. Exogenous γ-glutamic acid (GABA) induces proline and glutathione synthesis in alleviating Cd-induced photosynthetic inhibition and oxidative damage in tobacco leaves. Journal of Plant Interactions, 2021, 16(1): 296-306 (IF2021:4.029, Corresponding author)
[4] Yang FW, Zhang HB, Wang Y, He GQ, Wang JC, Guo DD, Li T, Sun GY, Zhang HH. The role of antioxidant mechanism in photosynthesis under heavy metals Cd or Zn exposure in tobacco leaves. Journal of Plant Interactions. 2021,16(1):344-354 (IF2021:4.029, Corresponding author)
[5] Guo KW, Xu ZS, Huo YZ, Sun Q, Wang Y, Che YH, Wang JC, Li W, Zhang HH. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signaling & Behavior, 2021,15(12):1832373 (IF2020: 2.247, Corresponding author)
[6] Zhang HH, Liu XQ, Zhang HB, Wang Y, Che YH, Wang JC, Guo DD, Sun GY, Li X. Thioredoxin-like protein CDSP32 alleviates Cd-induced photosynthetic inhibition of tobacco leaves by regulating cyclic electron flow and excess energy dissipation. Plant Physiology and Biochemistry, 2021, 167: 831-839 (IF2021:5.437)
[7] Zhang HH, Huo YZ, Guo KW, Xu ZS, Liu SQ, Wang Q, Wang XC, Xu N, Wu YN, Sun GY. Na+ accumulation alleviates drought stress induced photosynthesis inhibition of PSII and PSI in leaves of Medicago sativa. Journal of Plant Interactions, 2021, 16(1): 119-128 (IF2021:4.029)
2020年以前
[1] Zhang HH, Xu ZS, Huo YZ, Guo KW, He GQ, Sun HW, Li MB, Li X, Xu N, Gun GY. Overexpression of Trx CDSP32 gene promotes chlorophyll synthesis and photosynthetic electron transfer and alleviates cadmium-induced photoinhibition of PSII and PSI in tobacco leaves. Journal of Hazardous Materials, 2020, 397:12289 (IF2020: 10.588, Top)
[2] Zhang HH, Li X, Xu ZS, Wang Y, Teng ZY, Zhu WX, Xu N, Sun GY. Toxic effects of heavy metal Pb and Cd on mulberry (Morus alba L.) leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicology and Environmental Safety, 2020, 195: 10469 (IF2020: 6.291, ESI高被引)
[3] Zhang HH, Li X, Guan YP, Li MB, Wang Y, Liu GJ, Xu N, Sun GY. Physiological and proteomic responses of reactive oxygen species and antioxidant machinery in leaves of mulberry (Morus alba L.) to NaCl and NaHCO3 stress. Ecotoxicology and Environmental Safety, 2020, 193: 110259 (IF2020: 6.291)
[4] Zhang HH, Wang Y, Li X, Che YH, An MJ, Zhang YH, Xu N, Sun GY. Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicology and Environmental Safety, 2020, 190: 11016 (IF2020: 6.291)
[5] Zhang HH, Xu ZS, Guo KW, Huo YZ, He GQ, Xu N, Yang W, Gun GY. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis. Ecotoxicology and Environmental Safety, 2020, 202: 110856 (IF2020: 6.291)
[6] Zhang HH, Xu N, Li X, Han Y, Ren JW, Li MB, Zhai S, Yang RY, Teng ZY, Sun GY. Effects of exogenous abscisic acid on the photosynthetic function and active oxygen species metabolism of tobacco leaves under drought stress. Photosynthetica, 2020, 58(6): 400-409 (IF2020: 3.189)
[7] Zhang HH. Li X, Che YH, Wang Y, Teng ZY, Xu N, Sun GY. A study on the effects of salinity and pH on PSII function in mulberry seedling leaves under saline-alkali mixed stress. Trees-Structure and Function, 2020, 34(3): 693-706 (IF2020: 2.529)
[8] Zhang HH, Huo YZ, Xu ZS, Guo KW, Wang Y, Xu N, Sun GY. Physiological and proteomics responses of nitrogen assimilation and glutamine/glutamine family of amino acids metabolism in mulberry (Morus alba L.) leaves to NaCl and NaHCO3 stress. Plant Signaling & Behavior, 2020,15(10):1798108 (IF2020: 2.247)
[9] Zhang HH, Shi GL, Shao JY, Li X, Li MB, Meng L, Xu N, Sun GY. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotoxicology and Environmental Safety, 2019, 184: 109624 (IF2019: 4.872)
[10] Zhang HH, Xu N, Teng ZY, Wang JR, Ma SL, Wu XY, Li X, Sun GY. 2-Cys Prx plays a critical role in scavenging H2O2 and protecting photosynthetic function in leaves of tobacco seedlings under drought stress. Journal of Plant Interactions, 2019,14(1):119-128 (IF2019:2.992)
[11] Zhang HH, Li X, Zhang SB, Yin ZP, Zhu WX, Li JB, Meng L, Zhong HX, Wu YN, Xu N, Sun GY. Rootstock alleviates salt stress in grafted mulberry seedlings: physiological and PSII Function responses. Frontiers in Plant Science, 2018, 9: 1806 (IF2018:4.106)
[12] Zhang HH, Xu N, Li X, Long JH, Sui X, Wu YN, Li JB, Qu Y, Sun GY. Arbuscular mycorrhizal fungi (Glomus mosseae) improve growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. under cadmium contaminated soil. Frontiers in Plant Science, 2018, 9: 1156 (IF2018:4.106)
[13] Zhang HH, Xu N, Wu XY, Wang JR, Ma SL, Li X, Sun GY. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. Journal of Plant Interactions, 2018, 13(1): 506-513 (IF2018:1.839)
[14] Zhang HH, Zhang SY, Meng XXY, Li MS, Mu LQ, Lei JP, Sui X. Conversion from natural wetlands to forestland and farmland alters the composition of soil fungal communities in Sanjiang Plain, Northeast China. Biotechnology and Biotechnological Equipment, 2018, 32(4): 951-960 (IF2018:1.227)
[15] Zhang HH, Feng P, Yang W, Sui X, Li X, Zhang RT, Gu SY, Xu N. Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. Journal of Forestry Research, 2018, 39(4):1049-1059 (IF2018: 0.777)
[16] Zhang HH, Xu N, Sui X, Zhong HX, Yin ZP, Li X, Sun GY. Photosystem II function response to drought stress in leaves of two alfalfa (Medicago sativa) varieties. International Journal of Agriculture and Biology, 2018, 20(5):1012-1020 (IF2018: 0.802)
[17] Zhang HH, Zhong HX, Wang JF, Sui X, Xu N. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”. Peer J, 2016, 4(3): 2125 (IF2016:2.177)
[18] Zhang HH, Xu N, Li X, Jin WW, Tian Q, Sun GY, Gu SY. Overexpression of 2-Cys Prx Increased Salt Tolerance of Photosystem II in Tobacco. International Journal of Agriculture and Biology, 2017, 19(4): 735-745 (IF2017: 0.869)
[19] Zhang HH, Li X, Xu N, Sun ML, Sun GY, Gu SY. Alkalinity and salinity tolerance during seed germination and early seedling stages of three alfalfa (Medicago sativa L.) cultivars. Legume Research,2017,40(5): 853-858 (IF2017: 0.232)
[20] Li X, Zhang HH,Sun ML, Xu N, Zhao MC, Sun GY. Land use change from upland to paddy field in Mollisols drives soil aggregation and associated microbial communities. Applied Soil Ecology, 2020,146:103351 (IF2020: 4.046, co-first author)
[21] Xu N, Zhang HH, Zhong HX, Wu YN, Li JB, Li X, Yin ZP, Zhu WX, Qu Y, Sun GY. The response of photosynthetic functions of F1 cutting seedlings from Physocarpus amurensis Maxim (♀) × Physocarpus opulifolius “Diabolo” (♂) and the parental leaves to salt stress. Frontiers in Plant Science, 2018,9:714 (IF2018: 4.106, co-first author)